THE ACM CODE OF ETHICS

: The Association for Computing Machlnery (ACM) is the flagship organization for ,
computmg professionals. The ACM supports publlcat:ons of research results and new

trends in computer science, sponsors conferences and professional meetings, and pro-

vides standards for computer scientists as professionals. The standards concerning
‘the conduct and professional responsibility of computer scientists have been pub-
lished in the ACM Code of Ethics. The code is intended as a basis for ethical decision
making and for judging the merits of complaints about violations of professional ethical
standards.

The code lists several general moral imperatives for computer professionals:

Contribute to society and human well-being.

Avoid harm to others.

Be honest and trustworthy.

Be fair and take action not to discriminate.

Honor property rights, including copyrights and patents.
Give proper credit for intellectual property.

Respect the privacy of others.

Honor confidentiality.

The code also lists several more specific professional responsibilities:

Strive to achieve the highest quality, effectiveness, and dignity in both the
process and products of professional work.

Acquire and maintain professional competence.
Know and respect existing laws pertaining to professional work.
Accept and provide appropriate professional review.

Give comprehensive and thorough evaluations of computer systems and their
impacts, including analysis of possible risks.

Honor contracts, agreements, and assigned responsibilities.
Improve public understanding of computing and its consequences.

Access computing and communication resources only when authorized to do so.

In addition to these principles, the code offers a set of guidelines that provide pro-
fessionals with explanations of various issues contained in the principles. The complete
text of the ACM Code of Ethics is available at the ACM’s Web site, http://www.acm.org.




When governments deS|gn copynght legislation, they try t ;

~authors and publishers to a return on their work against the rights of the public to fair
use. In the case of printed matter and other works that have a physical embodiment,
the meaning of fair use is usually clear. Without fair use, borrowing a book froma
library or playing a CD at a high school dance would be unlawful.

With the rapid rise of digital information and its easy transmission on networks, dif-

ferent interest groups—authors, publishers, users, and computer professionals—are
beginning to question the traditional balance of ownership rights and fair use. For
example, is browsing a copyrighted manuscript on a network service an instance of fair
use? Or does it involve a reproduction of the manuscript that violates the rights of the
author or publisher? Is the manuscript a physical piece of intellectual property when
browsed or just a temporary pattern of bits in a computer's memory? When you listen
to an audio clip on a network, are you violating copyright, or only when you download
the clip to your hard drive? Users and technical experts tend to favor free access to
any information placed on a network. Publishers and, to a lesser extent, authors tend
to worry that their work, when placed on a network, will be resold for profit.

Legislators struggling with the adjustment of copyright law to a digital environment
face many of these questions and concerns. Providers and users of digital information
should also be aware of the issues. For more information about these topics, visit the
Creative Commons Web site at http://creativecommons.org/.




gan in the late 1950s at 1 : )
~ of them students and later professuonals and teachers in the ﬂeld regarded hack g
. as an accomphshment along the lines of Olymplc gymnastics. These programmers
even advocated a “hacker ethic,” which stated, among other things, that hackers
should respect the privacy of others and distribute their software for free. For a narra-
tive of the early tradition of hacking, see Steven Levy, Hackers: Heroes of the Computer
Revolution (Garden City, New York: Anchor Press/Doubleday, 1984).

Unfortunately, the practice of hacking has changed over the years, and the term
has acquired darker connotations. Programmers who break into computer systems in
an unauthorized way are called hackers, whether their intent is just to impress their
peers or to cause actual harm. Students and professionals who lack a disciplined
approach to programming are also called hackers. An excellent account of the most
famous case of intrusive hacking can be found in Clifford Stoll, The Cuckoo’s Egg:
Tracking Through the Maze of Computer Espionage (New York: Doubleday, 1989).




~ suspect computer and could repair infected programs

Viruses and virus detectors have coevolved through the years, however and both
kinds of software have becomevery sophisticated. Viruses now hide themselves better
than they used to; virus detectors can no longer just examine pieces of data stored in
memory to reveal the presence or absence of a virus. Researchers have recently devel-
oped a method of running a program that might contain a virus to see whether or not
the virus becomes active. The suspect program runs in a “safe” environment that pro-
tects the computer from any potential harm. As you can imagine, this process takes
time and costs money. For an overview of the history of viruses and the new detection
technology, see Carey Nachenberg, “Computer Virus-Antivirus Coevolution,”
Communications of the ACM, Volume 40, No. 1 (January 1997): 46-51.




Electronic Voting Machines

In the 2000 presidential elections in the United States, votes were tallied by a variety of
machines. Some machines processed cardboard ballots into which voters punched holes to
indicate their choices (see Punch Card Ballot figure). When voters were not careful, remains
of paper—the now infamous “chads” —were partially stuck in the punch cards, causing votes
to be miscounted. A manual recount was necessary, but it was not carried out everywhere
due to time constraints and procedural wrangling. The election was very close, and there
remain doubts in the minds of many people whether the election outcome would have been
different if the voting machines had accurately counted the intent of the voters.

Subsequently, voting machine manufacturers have argued that electronic voting machines
would avoid the problems caused by punch cards or optically scanned forms. In an elec-
tronic voting machine, voters indicate their preferences by pressing buttons or touching
icons on a computer screen. Typically, each voter is presented with a summary screen for
review before casting the ballot. The process is very similar to using an automatic bank teller
machine (see Touch Screen Voting Machine figure).

It seems plausible that these machines make it more likely that a vote is counted in the
same way that the voter intends. However, there has been significant controversy

Punch Card Ballot

surrounding some types of electronic voting machines. If 2 machine simply records the votes
and prints out the totals after the election has been completed, then how do you know that
the machine worked correctly? Inside the machine is a computer that executes a program,
and, as you may know from your own experience, programs can have bugs.

In fact, some electronic voting machines do have bugs. There have been isolated cases
where machines reported tallies that were impossible. When a machine reports far more or
far fewer votes than voters, then it is clear that it malfunctioned. Unfortunately, it is then
impossible to find out the actual votes. Over time, one would expect these bugs to be fixed in
the software. More msldloush, if the results are plau51b]e, nobody may ever inv Lsugate

Many computer scientists have spoken out on this issue and confirmed that it is impossi-
ble, with today’s technology, to tell that software is error free and has not been tampered
with. Many of them recommend that electronic voting machines should be complemented
by a voter verifiable aundit trail. (A good source of information is [1].) Typically, a voter-
verifiable machine prints out the choices that are being tallied. Each voter has a chance to
review the printout, and then deposits it in an old-fashioned ballot box. If there is a problem
with the electronic equipment, the printouts can be counted by hand.

As this book is written, this concept is strongly resisted both by manufacturers of elec-
tronic voting machines and by their customers, the cities and counties that run elections.
Manufacturers are reluctant to increase the cost of the machines because they may not be
able to pass the cost increase on to their customers, who tend to have tight budgets. Election
olficials fear problems with malfunctioning prinzers, and some of them have publicly stated
that they actually prefer equipment that eliminates bothersome recounts.



What do you think? You probably use an automatic bank teller machine to get cash from
your bank account. Do you review the paper record that the machine issues? Do you check
your bank statement? Even if you don’t, do you put your faith in other people who double-
check their balances, so that the bank won’t get away with widespread cheating?

At any rate, is the integrity of banking equipment more important or less important than
that of voting machines? Won’t every voting process have some room for error and fraud
anyway? Is the added cost for equipment, paper, and staff time reasonable to combat a
potentially slight risk of malfunction and fraud? Computer scientists cannot answer these
questions—an informed society must make these tradeoffs. But, like all professionals, they
have an obligation to speak out and give accurate testimony about the capabilities and limita-
tions of computing equipment.



An Early Internet Worm

In November 1988, a graduate student at Cornell University launched a virus program that
infected about 6,000 computers connected to the Internet across the United States. Tens of
thousands of computer users were unable to read their e-mail or otherwise use their comput-
ers. All major universities and many high-tech companies were affected. (The Internet was |
much smaller then than it is now.)

The particular kind of virus used in this attack is called a worm. The virus program
crawled from one computer on the Internet to the next. The entire program is quite complex;
its major parts are explained in [2]. However, one of the methods used in the attack is of
interest here. The worm would attempt to connect to finger, a program in the UNIX operat-
ing system for finding information on a user who has an account on a particular computer on
the network. Like many programs in UNIX, finger was written in the C language. C does
not have array lists, only arrays, and when you construct an array in C, as in Java, you have
to make up your mind how many elements you need. To store the user name to be looked up
(say, walters@cs.sjsu.edu), the finger program allocated an array of 512 characters, under
the assumption that nobody would ever provide such a long input. Unfortunately, C, unlike
Java, does not check that an array index is less than the length of the array. If you write into
an array, using an index that is too large, you simply overwrite memory locations that belong
to some other objects. In some versions of the finger program, the programmer had been
lazy and had not checked whether the array holding the input characters was large enough w
hold the input. So the worm program purposefully filled the 512-character array with 536
bytes. The excess 24 bytes would overwrite a return address, which the attacker knew was
stored just after the line buffer. When that function was finished, it didn’t return to its caller
but to code supplied by the worm (see A “Buffer Overrun™ Attack). That code ran under the
same super-user privileges as finger, allowing the worm to gain entry into the remot
system.

Had the programmer who wrote finger been more conscientious, this particular attack
would not be possible. In C++ and C, all programmers must be especially careful not to
overrun array boundaries.

One may well wonder what would possess a skilled programmer to spend many weeks ol
months to plan the antisocial act of breaking into thousands of computers and disabling
them. Tt appears that the break-in was fully intended by the author, but the disabling of the
computers was a side effect of continuous reinfection and efforts by the worm to avoid being

killed. It is not clear whether the author was aware that these moves would cripple the
attacked machines.

In recent years, the novelty of vandalizing other people’s computers has worn off some-
what, and there are fewer jerks with programming skills who write new viruses. Other
attacks by individuals with more criminal energy, whose intent has been to steal information

or money, have surfaced. See [3] for a very readable account of the discovery and apprehen-
sion of one such person.



Software Piracy

As you read this, you have written a few computer programs, and you have experienced
firsthand how much effort it takes to write even the humblest of programs. Writing a real
software product, such as a financial application or a computer game, takes a lot of time and
money. Few people, and fewer companies, are going to spend that kind of time and money if
they don’t have a reasonable chance to make more money from their effort. (Actually, some
companies give away their software in the hope that users will upgrade to more elaborate
paid versions. Other companies give away the software that enables users to read and use
files but sell the software needed to create those files. Finally, there are individuals who
donate their time, out of enthusiasm, and produce programs that you can copy freely.)

When selling software, a company must rely on the honesty of its customers. It is an easy
matter for an unscrupulous person to make copies of computer programs without paying for
them. In most countries that is illegal. Most governments provide legal protection, such as
copyright laws and patents, to encourage the development of new products. Countries that
tolerate widespread piracy have found that they have an ample cheap supply of foreign soft-
ware, but no local manufacturers willing to design good software for their own citizens, such
as word processors in the local script or financial programs adapted to the local tax laws.

When a mass market for software first appeared, vendors were enraged by the money
they lost through piracy. They tried to fight back by various schemes to ensure that only the
legitimate owner could use the software. Some manufacturers used key disks: ditks with spe- |
cial patterns of holes burned in by a laser, which couldn’t be copied. Others used dongles:

devices that are attached to a printer port. Legitimate users hated these measures. They paid
for the software, but they had to suffer through the inconvenience of inserting a key disk
every time they started the software or having multiple dongles stick out from their com-
puter. In the United States, market pressures forced most vendors to give up on these copy
protection schemes, but they are still commonplace in other parts of the world.

Because it is so casy and inexpensive to pirate software, and the chance of being found out
is minimal, you have to make a moral choice for yourself. If a package that you would really
like to have is too expensive for your budget, do you steal it, or do you stay honest and get
by with a more affordable product?

Of course, piracy is not limited to software. The same issues arise for other digital prod-
ucts as well. You may have had the opportunity to obtain copies of songs or movies without
payment. Or you may have been frustrated by a copy protection device on your music
player that made it difficult for you to listen to songs that you paid for. Admittedly, it can be
difficult to have a lot of sympathy for a musical ensemble whose publisher charges a lot of
money for what seems to have been very little effort on their part, at least when compared to
the effort that goes into designing and implementing a software package. Nevertheless, it
seems only fair that artists and authors receive some compensation for their efforts. How to
pay artists, authors, and programmers fairly, without burdening honest customers, is an
unsolved problem at the time of this writing, and many computer scientists are engaged in
research in this area.



