2 CHAPTER 1 = Introduction

CHAPTER CONTENTS

1.1 What Is Programming? 2 PRODUCTIVITY HINT 1.2: Have a

Backup Strat 16
1.2 The Anatomy of a Computer 3 ackip > A ly

RANDOM FACT 1.1: The ENIAC and the 1.6 Compiling a Simple Program 17
Dawn of Computing 7 SYNTAX 1.1: Method Call 21
COMMON ERROR 1.1: Omitting Semicolons 22
ADVANCED ToriC 1.1: Alternative
Comment Syntax 22

1.3 Translating Human-Readable
Programs to Machine Code 8

1.4 The Java Programming

Language 10 1.7 Errors 23

COMMON ERROR 1.2: Misspelling Words 24

1.5 Becoming Familiar with
Your Computer 12

PRODUCTIVITY HINT 1.1: Understand the
File System 15

1.8 The Compilation Process 25

1.1 What Is Programming?

You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as balancing a checkbook or writing a term paper. Comput-
ers are good for such tasks. They can handle repetitive chores, such as totaling up
numbers or placing words on a page, without getting bored or exhausted. Comput-
ers also make good game machines because they can play sequences of sounds and
pictures, involving the human user in the process.

The flexibility of a computer is quite an amazing phenomenon. The same
machine can balance your checkbook, print your term paper, and play a game. In
contrast, other machines carry out a much narrower range of tasks—a car drives
and a toaster toasts.

To achieve this flexibility, the computer must be programmed to
perform each task. A computer itself is a machine that stores data
(numbers, words, pictures), interacts with devices (the monitor
screen, the sound system, the printer), and executes programs. Pro-
grams are sequences of instructions and decisions that the computer
carries out to achieve a task. One program balances checkbooks; a
e different program, perhaps designed and constructed by a different
it saiencs of company, processes words; and a third program, probably from yet
very basic operations in another company, plays a game.
rapid succession. Today’s computer programs are so sophisticated that it is hard to

believe that they are all composed of extremely primitive operations.

A computer must be
programmed to perform
tasks. Different tasks
require different programs.

A computer program

1.2 = The Anatomy of a Computer 3

A typical operation may be one of the following:

* Putared dot onto this screen position.
e Send the letter A to the printer.
* Get a number from this location in memory.

Add up two numbers.

If this value is negative, continue the program at that instruction.

A computer program tells a computer, in minute detail, the sequence

L lains the instruction of steps that are needed to complete a task. A program contains a
sequences for all tasks huge number of simple operations, and the computer executes them
that it can execute. at great speed. The computer has no intelligence—it simply executes

i,

instruction sequences that have been prepared in advance.

To use a computer, no knowledge of programming is required. When you write a
term paper with a word processor, that software package has been programmed by
the manufacturer and is ready for you to use. That is only to be expected —you can
drive a car without being a mechanic and toast bread without being an electrician.

A primary purpose of this book is to teach you how to design and implement
computer programs. You will learn how to formulate instructions for all tasks that
your programs need to execute.

Keep in mind that programming a sophisticated computer game or word proces-
sor requires a team of many highly skilled programmers, graphic artists, and other
professionals. Your first programming efforts will be more mundane. The concepts
and skills you learn in this book form an important foundation, but you should not
expect to immediately produce professional software. A typical college program in
computer science or software engineering takes four years to complete; this book is
intended as an introductory course in such a program.

Many students find that there is an immense thrill even in simple programming
tasks. It is an amazing experience to see the computer carry out a task precisely and
quickly that would take you hours of drudgery.

SELF CHECK

1. What is required to play a music CD on a computer?
2. Why is a CD player less flexible than a computer?

3. Can a computer program develop the initiative to execute tasks in a better way
than its programmers envisioned?

The Anatomy of a Computer

To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. This section will describe
a personal computer. Larger computers have faster, larger, or more powerful com-
ponents, but they have fundamentally the same design.

At the heart of the
computer lies the central

CHAPTER 1T = Introduction

Figure 1 Central Processing Unit

At the heart of the computer lies the central processing unit (CPU)
(see Figure 1). It consists of a single chip (integrated circuit) or a

processing unit (CPU). small number of chips. A computer chip is a component with a plastlc

Data and programs are
stored in primary storage
(memory) and secondary
storage (such as a

hard disk).

or metal housing, metal connectors, and inside wiring made princi-
pally from silicon. For a CPU chip, the inside wiring is enormously complicated.
For example, the Pentium 4 chip (a popular CPU for personal computers at the
time of this writing) contains over 50 million structural elements called transistors—
the elements that enable electrical signals to control other electrical signals, making
automatic computing possible. The CPU locates and executes the program instruc-
tions; it carries out arithmetic operations such as addition, subtraction, multiplica-
tion, and division; and it fetches data from storage and input/output devices and
sends data back.

The computer keeps data and programs in storage. There are two
kinds of storage. Primary storage, also called random-access memory
(RAM) or simply memory, is fast but expensive; it is made from
memory chips (see Figure 2). Primary storage has two disadvantages.
It is comparatively expensive, and it loses all its data when the power
is turned off. Secondary storage, usually a hard disk (see Figure 3),
provides less expensive storage that persists without electricity. A hard disk consists
of rotating platters, which are coated with a magnetic material, and read/write
heads, which can detect and change the patterns of varying magnetic flux on the
platters. This is essentially the same recording and playback process that is used in
audio or video tapes.

Some computers are self-contained units, whereas others are interconnected
through networks. Home computers are usually intermittently connected to the
Internet via a dialup or broadband connection. The computers in your computer
lab are probably permanently connected to a local area network. Through the net-
work cabling, the computer can read programs from central storage locations or

1.2 = The Anatomy of a Computer 5

Figure 2
A Memory Module with Memory Chips

send data to other computers. For the user of a networked computer, it may not
even be obvious which data reside on the computer itself and which are transmitted
through the network.

Most computers have removable storage devices that can access data or programs
on media such as floppy disks, tapes, or compact discs (CDs).

Figure 3 A Hard Disk

The CPU reads machine
instructions from memory.
The instructions direct it
to communicate with
memory, secondary
storage, and peripheral

devices.

CHAPTER 1 = [ntroduction

Figure 4 A Motherboard

To interact with a human user, a computer requires other peripheral devices. The
computer transmits information to the user through a display screen, loudspeakers,
and printers. The user can enter information and directions to the computer by
using a keyboard or a pointing device such as a mouse.

The CPU, the RAM, and the electronics controlling the hard disk and other
devices are interconnected through a set of electrical lines called a bus. Data travel
along the bus from the system memory and peripheral devices to the CPU and
back. Figure 4 shows a motherboard, which contains the CPU, the RAM, and con-
nectors to peripheral devices.

Figure 5 gives a schematic overview of the architecture of a com-
puter. Program instructions and data (such as text, numbers, audio,
or video) are stored on the hard disk, on a CD, or on a network.
When a program is started, it is brought into memory where it can be
read by the CPU. The CPU reads the program one instruction at a
time. As directed by these instructions, the CPU reads data, modifies
it, and writes it back to RAM or to secondary storage. Some program
instructions will cause the CPU to interact with the devices that
control the display screen or the speaker. Because these actions happen many times
over and at great speed, the human user will perceive images and sound. Similarly,
the CPU can send instructions to a printer to mark the paper with patterns of closely
spaced dots, which a human recognizes as text characters and pictures. Some pro-
gram instructions read user input from the keyboard or mouse. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instructions.

1.2 = The Anatomy of a Computer 7

o

Printer '
M®> Hard disk

= i!

CD-ROM drive

Keyboard

Speakers

g,

4

&

)
~ Internet |

%

Bus S,

Figure 5 Schematic Diagram of a Computer

SELF CHECK

4. Where is a program stored when it is not currently running?

5. Which part of the computer carries out arithmetic operations, such as addition

Monitor
and multiplication?
)
i

RANDOM FaAcT 1.1

The ENIAC and the Dawn of Computing

The ENIAC (electronic zumerical ntegrator and computer) was the first usable electronic
computer. It was designed by J. Presper Eckert and John Mauchly at the University of Penn-
sylvania and was completed in 1946. Instead of transistors, which were not invented until
two years after it was built, the ENIAC contained about 18,000 vacuum tubes in many cabi-
nets housed in a large room (see The ENIAC figure). Vacuum tubes burned out at the rate of
several tubes per day. An attendant with a shopping cart full of tubes constantly made the
rounds and replaced defective ones. The computer was programmed by connecting wires on
panels. Each wiring configuration would set up the computer for a particular problem. To
have the computer work on a different problem, the wires had to be replugged.

Work on the ENIAC was supported by the U.S. Navy, which was interested in computa-
tions of ballistic tables that would give the trajectory of a projectile, depending on the wind
resistance, initial velocity, and atmospheric conditions. To compute the trajectories, one must

8 cHAPTER 1 = Introduction

The ENIAC

find the numerical solutions of certain differential equations; hence the name “numerical
integrator”. Before machines like ENIAC were developed, humans did this kind of work,
and until the 1950s the word “computer” referred to these people. The ENIAC was later
used for peaceful purposes, such as the tabulation of U.S. census data.

1.3 Translating Human-Readable Programs to
Machine Code

T el On the most basic level, computer instructions are extremely primi-

depends on the CPU type. tive. The processor executes machine instructions. CPUs from differ-
However, the instruction ent vendors, such as the Intel Pentium or the Sun SPARC, have
set of the Java virtual different sets of machine instructions. To ¢nable Java applications to
machine JVM) can be run on multiple CPUs without modification, Java programs contain
executed on many CPUs. machine instructions for a so-called “Java virtual machine” (JVM), an

idealized CPU that is simulated by a program run on the actual CPU.
The difference between actual and virtual machine instructions is not important—
all you need to know is that machine instructions are very simple, are encoded as
numbers and stored in memory, and can be executed very quickly.

1.3 = Translating Human-Readable Programs to Machine Code 9

A typical sequence of machine instructions is

1. Load the contents of memory location 40.
2. Load the value 100.

3. If the first value is greater than the second value, continue with the instruction
that is stored in memory location 240.

Actually, machine instructions are encoded as numbers so that they can be stored in
memory. On the Java virtual machine, this sequence of instruction is encoded as the
sequence of numbers

21 40
16 100
163 240

When the virtual machine fetches this sequence of numbers, it decodes them and
executes the associated sequence of commands.

How can you communicate the command sequence to the com-
puter? The most direct method is to place the actual numbers into the
computer memory. This is, in fact, how the very earliest computers
worked. However, a long program is composed of thousands of indi-
vidual commands, and it is tedious and error-prone to look up the
numeric codes for all commands and manually place the codes into
memory. As we said before, computers are really good at automating tedious and
error-prone activities, and it did not take long for computer programmers to realize
that computers could be harnessed to help in the programming process.

In the mid-1950s, high-level programming languages began to
appear. In these languages, the programmer expresses the idea behind
the task that needs to be performed, and a special computer program,
called a compiler, translates the high-level description into machine
instructions for a particular processor.

For example, in Java, the high-level programming language that you will use in
this book, you might give the following instruction:

Because machine
instructions are encoded
as numbers, it is difficult
to write programs in
machine code.

High-level languages allow
you to describe tasks at a
higher conceptual level
than machine code.

if (intRate > 100)
System.out.printin("Interest rate error™);
This means, “If the interest rate is over 100, display an error message”. It is then the
job of the compiler program to look at the sequence of characters if (intRate >
100) and translate that into

21 40 16 100 163 240 .

Compilers are quite sophisticated programs. They translate logical
statements, such as the if statement, into sequences of computations,
tests, and jumps. They assign memory locations for variables—items
of information identified by symbolic names—like intRate. In this
course, we will generally take the existence of a compiler for granted.
If you decide to become a professional computer scientist, you may well learn more
about compiler-writing techniques later in your studies.

A compiler translates
programs written in a
high-level language into
machine code.

10

Java was originally
designed for programming

CHAPTER 1 = Introduction

SELF CHECK

6. What is the code for the Java virtual machine instruction “Load the contents of
memory location 100”?

7. Does a person who uses a computer for office work ever run a compiler?

1.4 The Java Programming Language

In 1991, a group led by James Gosling and Patrick Naughton at Sun
Microsystems designed a programming language that they code-

Consutherdeviies hinit named “Green” for use in consumer devices, such as intelligent tele-
was first successfully used vision “set-top” boxes. The language was designed to be simple and
to write Internet applets. architecture neutral, so that it could be executed on a variety of hard-

Java was designed to be
safe and portable,
benefiting both Internet
users and students.

ware. No customer was ever found for this technology.

Gosling recounts that in 1994 the team realized, “We could write a really cool
browser. It was one of the few things in the client/server mainstream that needed
some of the weird things we’d done: architecture neutral, real-time, reliable, secure”.
Java was introduced to an enthusiastic crowd at the SunWorld exhibition in 1995.

Since then, Java has grown at a phenomenal rate. Programmers
have embraced the language because it is simpler than its closest rival,
C++. In addition, Java has a rich library that makes it possible to
write portable programs that can bypass proprietary operating sys-
tems—a feature that was eagerly sought by those who wanted to be
independent of those proprietary systems and was bitterly fought by their vendors.
A “micro edition” and an “enterprise edition” of the Java library make Java pro-
grammers at home on hardware ranging from smart cards and cell phones to the
largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for beginners: safety and portability. If you visit a web page that contains
Java code (so-called applets—see Figure 6 for an example), the code automatically
starts running. It is important that you can trust that applets are inherently safe. If
an applet could do something evil, such as damaging data or reading personal infor-
mation on your computer, then you would be in real danger every time you
browsed the Web—an unscrupulous designer might put up a web page containing
dangerous code that would execute on your machine as soon as you visited the
page. The Java language has an assortment of security features that guarantees that
no evil applets can run on your computer. As an added benefit, these features also
help you to learn the language faster. The Java virtual machine can catch many kinds
of beginners’ mistakes and report them accurately. (In contrast, many beginners’
mistakes in the C++ language merely produce programs that act in random and
confusing ways.) The other benefit of Java is portability. The same Java program
will run, without change, on Windows, UNIX, Linux, or the Macintosh. This too is
a requirement for applets. When you visit a web page, the web server that serves up

1.4 = The Java Programming Language 11

rewind | prev | next | play | revplay |

Figure 6 An Applet for Visualizing Molecules ([1])

the page contents has no idea what computer you are using to browse the Web. It
simply returns you the portable code that was generated by the Java compiler. The
virtual machine on your computer executes that portable code. Again, there is a
benefit for the student. You do not have to learn how to write programs for differ-
ent operating systems.

At this time, Java is firmly established as one of the most important languages for
general-purpose programming as well as for computer science instruction. How-
ever, although Java i1s a good language for beginners, it is not perfect, for three
reasons.

Because Java was not specifically designed for students, no thought was given to
making it really simple to write basic programs. A certain amount of technical
machinery is necessary in Java to write even the simplest programs. This is not a
problem for professional programmers, but it is a drawback for beginning students.
As you learn how to program in Java, there will be times when you will be asked to
be satisfied with a preliminary explanation and wait for complete details in a later
chapter.

Java was revised and extended many times during its life—see Table 1. In this
book, we assume that you have Java version 5 or later.

Finally, you cannot hope to learn all of Java in one semester. The Java language
itself is relatively simple, but Java contains a vast set of library packages that are

12 CHAPTER 1 =

Java has a very large
library. Focus on learning
those parts of the library
that you need for your
programming projects.

Introduction

required to write useful programs. There are packages for graphics,
user interface design, cryptography, networking, sound, database
storage, and many other purposes. Even expert Java programmers
cannot hope to know the contents of all of the packages—they just
use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the
Java language and about the most important packages. Keep in mind

that the central goal of this book is not to make you memorize Java minutiae, but to
teach you how to think about programming.

Version
10
1.1
12
1.3

1.4

SELF CHECK

Table 1 Java Versions

Year Important New Features

1996

1997 Inner classes

1998 Swing, Collections

2000 Performance enhancements

2002 Assertions, XML

2004 Generic classes, enhanced for loop, auto-boxing, enumerations
2006 Library improvements

8. What are the two most important benefits of the Java language?

9. How long does it take to learn the entire Java library?

1.5 Becoming Familiar with Your Computer

Set aside some time to
become familiar with the
computer system and the
Java compiler that you will
use for your class work.

You may be taking your first programming course as you read this
book, and you may well be doing your work on an unfamiliar com-
puter system. Spend some time familiarizing yourself with the com-
puter. Because computer systems vary widely, this book can only
give an outline of the steps you need to follow. Using a new and
unfamiliar computer system can be frustrating, especially if you are

on your own. Look for training courses that your campus offers, or ask a friend to
give you a brief tour.

1.5 = Becoming Familiar with Your Computer 13

i

File Edit View Temminal Go Help

~$ cd BigJava/ch0l
- /BigTava/ch01$

Figure 7
A Shell Window

Step 1. Log In

If you use your home computer, you probably don’t need to worry about this step.
Computers in a lab, however, are usually not open to everyone. You may need an
account name or number and a password to gain access to such a system.

Step 2. Locate the Java Compiler

Computer systems differ greatly in this regard. On some systems you must open a
shell window (see Figure 7) and type commands to launch the compiler. Other sys-
tems have an integrated development environment in which you can write and test
your programs (see Figure 8). Many university labs have information sheets and

I va - Eclipse SDK = 7 7 :
File Edit Source Refactor Navigate Search Project Run Window Help

Pr O Q8w e B S »
v Law \
(1% package .. | ™ Hierarchy | =0
| public class HelloPrinter e
v & hello public static veid main{String[] args)
¥ {# (default package) {) |
. , i/ [Z:‘ slay a greeting in the conso wiridow
P U] HelloPrinterjava :
P =i JRE Systern Library [jdk1.6.0 System.out.println("Hello, World!");
}
| ¥
Leled
roblems 82 javadociDec!anatmnéConsale%Searnh = ¥ 0

| 0 errors, 0 warnings, 0 infos

| Description Resource Path - Location

] i i nD o
Writable Smart nsert | 5:10

Figure 8 An Integrated Development Environment

14

CHAPTER 1 = Introduction

tutorials that walk you through the tools that are installed in the lab. Instructions
for several popular compilers are available in WileyPLUS.

Step 3. Understand Files and Folders

As a programmer, you will write Java programs, try them out, and improve them.
Your programs are kept in files. A file is a collection of items of information that are
kept together, such as the text of a word-processing document or the instructions of
a Java program. Files have names, and the rules for legal names differ from one sys-
tem to another. Some systems allow spaces in file names; others don’t. Some distin-
guish between upper- and lowercase letters; others don’t. Most Java compilers
require that Java files end in an extension— .java; for example, Test.java. Java file
names cannot contain spaces, and the distinction between upper- and lowercase let-
ters is important.

Files are stored in folders or directories. These file containers can be nested. That
is, a folder can contain not only files but also other folders, which themselves can
contain more files and folders (see Figure 9). This hierarchy can be quite large,
especially on networked computers, where some of the files may be on your local
disk, others elsewhere on the network. While you need not be concerned with

- 8 hello

[Helloprinter.class

[} HelloPrinterjava
v & choz
P applet
1 emptyframe
b faceviewer
< [rectangle

‘a

1 MoveTester.java

P [rectangles
- [B cho3
v {8 account
| BankAccount java
&
b car
b B cashregister
b choa
Figure 9 b 3 chos
Nested Folders b {Z choe

BankAccountTesterjava

1.5 = Becoming Familiar with Your Computer 15

every branch of the hierarchy, you should familiarize yourself with your local envi-
ronment. Different systems have different ways of showing files and directories.
Some use a graphical display and let you move around by clicking the mouse on
folder icons. In other systems, you must enter commands to visit or inspect differ-
ent locations.

Step 4. Write a Simple Program

In the next section, we will introduce a very simple program. You will need to learn
how to type it in, how to run it, and how to fix mistakes.

Step 5. Save Your Work
o You will spend many hours typing Java program code and improving
B b ckip i it. The resulting program files have some value, and you should treat
of your work before them as you would other important property. A conscientious safety
disaster strikes. strategy is particularly important for computer files. They are more

fragile than paper documents or other more tangible objects. It is
easy to delete a file accidentally, and occasionally files are lost because of a com-
puter malfunction. Unless you keep a copy, you must then retype the contents.
Because you probably won’t remember the entire file, you will likely find yourself
spending almost as much time as you did to enter and improve it in the first place.
This costs time, and it may cause you to miss deadlines. It is therefore crucial that
you learn how to safeguard files and that you get in the habit of doing so before
disaster strikes. You can make safety or backup copies of files by saving copies on a
floppy or CD, into another folder, to your local area network, or on the Internet.

SELF CHECK

10. How are programming projects stored on a computer?

11. What do you do to protect yourself from data loss when you work on pro-
gramming projects?

ProbpucTiviTY HINT 1.1

Understand the File System

In recent years, computers have become easier to use for home or office users. Many inessen-
tial details are now hidden from casual users. For example, many casual users simply place all
their work inside a default folder (such as “Home” or “My Documents”) and are blissfully
ignorant about details of the file system.

But you need to know how to impose an organization on the data that you create. You
also need to be able to locate and inspect files that are required for translating and running
Java programs.

16

CHAPTER 1 = Introduction

If you are not comfortable with files and folders, be sure to set aside some time to learn

about these concepts. Enroll in a short course, or take a web tutorial. Many free tutorials are
available on the Internet, but unfortunately their locations change frequently. Search the
Web for “files and folders tutorial” and pick a tutorial that goes beyond the basics.

PropucTiviTY HINT 1.2

Have a Backup Strategy

Come up with a strategy for your backups now, before you lose any data. Here are a few
pointers to keep in mind.

Select a backup medium. Floppy disks are the traditional choice, but they can be unreliable.
CD media are more reliable and hold far more information, but they are more expensive. An
increasingly popular form of backup is Internet file storage. Many people use two levels of
backup: a folder on the hard disk for quick and dirty backups, and a CD-ROM for higher
security. (After all, a hard disk can crash—a particularly common problem with laptop
computers.)

Back up often. Backing up a file takes only a few seconds, and you will hate yourself if
you have to spend many hours recreating work that you easily could have saved.

Rotate backups. Use more than one set of disks or folders for backups, and rotate them.
That is, first back up onto the first backup destination, then to the second and third, and
then go back to the first. That way you always have three recent backups. Even if one of
the floppy disks has a defect, or you messed up one of the backup directories, you can use
one of the others.

Back up source files only. The compiler translates the files that you write into files consist-
ing of machine code. There is no need to back up the machine code files, because you can
recreate them easily by running the compiler again. Focus your backup activity on those
files that represent your effort. That way your backups won’t fill up with files that you
don’t need.

Pay attention to the backup direction. Backing up involves copying files from one place to
another. It is important that you do this right—that is, copy from your work location to

the backup location. If you do it the wrong way, you will overwrite a newer file with an

older version.

Check your backups once in a while. Double-check that your backups are where you
think they are. There is nothing more frustrating than finding out that the backups are not
there when you need them. This is particularly true if you use a backup program that
stores files on an unfamiliar device (such as data tape) or in a compressed format.

Relax before restoring. When you lose a file and need to restore it from backup, you are
likely to be in an unhappy, nervous state. Take a deep breath and think through the
recovery process before you start. It is not uncommon for an agitated computer user to
wipe out the last backup when trying to restore a damaged file.

1.6

Java is case sensitive. You
must be careful about
distinguishing between
upper- and lowercase

letters.

1.6 = Compiling a Simple Program 17

Compiling a Simple Program

You are now ready to write and run your first Java program. The traditional choice
for the very first program in a new programming language is a program that dis-
plays a simple greeting: “Hello, World!”. Let us follow that tradition. Here is the
“Hello, World!” program in Java.

ch01/hello/HelloPrinter.java

1 public class HelloPrinter

§ ! public static void main(String[] args)

g // Display a greeting in the console window
g System.out.printin("Hello, World!");
X

Output

Hello, World!

We will examine this program in a minute. For now, you should make a new pro-
gram file and call it Hel1oPrinter. java. Enter the program instructions and compile
and run the program, following the procedure that is appropriate for your compiler.

Java is case sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type MAIN
or PrintLn. If you are not careful, you will run into problems—see
Common Error 1.2.

On the other hand, Java has free-form layout. You can use any
number of spaces and line breaks to separate words. You can cram as
many words as possible into each line,

public class HelloPrinter{public static void main(String[]
args){// Display a greeting in the console window
System.out.printin("Hello, World!");}}

You can even write every word and symbol on a separate line,

public

class
HelloPrinter
{

public
static

void

main

(

18 CHAPTER 1 = Introduction

However, good taste dictates that you lay out your programs in a
readable fashion. We will give you recommendations for good layout
throughout this book. Appendix A contains a summary of our
recommendations.

When you run the test program, the message

Hello, World!

Lay out your programs so
that they are easy to read.

will appear somewhere on the screen (see Figures 10 and 11). The exact location
depends on your programming environment.
Now that you have seen the program working, it is time to understand its makeup.

The first line,

public class HelloPrinter

starts a new class. Classes are a fundamental concept in Java, and you

Classes are the will begin to study them in Chapter 2. In Java, every program con-
fundamental building sists of one or more classes.
blocks of Java programs. The keyword public denotes that the class is usable by the “public”.
You will later encounter private features. At this point, you should
simply regard the

public class ClassName

{

}

as a necessary part of the “plumbing” that is required to write any Java program. In
Java, every source file can contain at most one public class, and the name of the
public class must match the name of the file containing the class. For example, the
class HelloPrinter must be contained in a file HelloPrinter.java. It is very impor-
tant that the names and the capitalization match exactly. You can get strange error
messages if you call the class HELLOPrinter or the file helloprinter. java.

Fila Edt View Terminal Tabs Help
~$ cd BigJava/ch@1l/hello
~/BigJava/ch@l/hello$ javac HelloPrinter.java

I~ 01/hello$ java HelloPrinter
Hello, World!
~/BigJava/chol/hello$ i

Figure 10 Running the HelloPrinter Program in a Console Window

1.6 = Compiling a Simple Program 19

HelloPrinterjava 53

public class He'LloPrJ.nter ;

¥ £ hello

~ i (default package)

public static void main{String[] args) !

e window

P JRE Systemn Library [jdk1.5.0]

'Problems. Ja\fadoc Declaration EConsole % Search

b <terminated> HelloPrinter Uava Apphnaﬁon] jhmm

_Hello, World!>

0 3 W

"
B

HelloPrinterjava - hello

Figure 11
Running the HelloPrinter Program in an Integrated Development Environment

Every Java application The construction

contains a class with a public static void main(String[] args)

main method. When the {

application starts, the }

instructions in the mafin defines a method called main. A method contains a collection of pro-

b gramming instructions that describe how to carry out a particular

task. Every Java application must have a main method. Most Java
R programs contain other methods besides main, and you will see in
chitin otethods Chapter 3 how to write other methods.
L o The parameter String[] args is a required part of the main
sequence of instructions. method. (It contains command line arguments, which we will not
discuss until Chapter 11.) The keyword static indicates that the main
method does not operate on an object. (As you will see in Chapter 2,
most methods in Java do operate on objects, and static methods are not common
in large Java programs. Nevertheless, main must always be static, because it starts
running before the program can create objects.)

20

CHAPTER 1 ® [ntroduction

At this time, simply consider

public class ClassName

{
public static void main(String[] args)
{
}

}

as yet another part of the “plumbing”. Our first program has all instructions inside
the main method of a class.
The first line inside the main method is a comment

// Display a greeting in the console window

This comment is purely for the benefit of the human reader, to

Use comments to help explain in more detail what the next statement does. Any text
human readers enclosed between // and the end of the line is completely ignored by

understand your program.

the compiler. Comments are used to explain the program to other
programmers or to yourself.

The instructions or statements in the body of the main method —that is, the state-
ments inside the curly braces ({})—are executed one by one. Each statement ends in
a semicolon (;). Our method has a single statement:

System.out.printin("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. However, there are
many places where a program can send that string: to a window, to a file, or to a net-
worked computer on the other side of the world. You need to specify that the desti-
nation for the string is the system outpur—that is, a console window. The console
window is represented in Java by an object called out. Just as you needed to place
the main method in a HelloPrinter class, the designers of the Java library needed to
place the out object into a class. They placed it in the System class, which contains
useful objects and methods to access system resources. To use the out object in the
System class, you must refer to it as System.out.

To use an object, such as System.out, you specify what you want to do to it. In
this case, you want to print a line of text. The print1n method carries out this task.

You do not have to implement this method—the programmers who wrote the
Java library already did that for us—but you do need to cal/ the method.

Whenever you call a method in Java, you need to specity three

A method is called by items (see Figure 12):

specifying an object, the
method name, and the

1. The object that you want to use (in this case, System.out)

method parameters. 2. The name of the method you want to.use (in this case, printin)

3. A pair of parentheses, containing any other information the
method needs (in this case, "He1lo, World!"). The technical
term for this information is a parameter for the method. Note
that the two periods in System.out.print1n have different
meanings. The first period means “locate the out object in the
System class”. The second period means “apply the printin
method to that object”.

1.6 = Compiling a Simple Program 21

Object Method Parameters

Figure 12
Calling a Method System.out.printin('Hello, World!")

A sequence of characters enclosed in quotation marks
"Hello, World!"

Astring is a sequence of 15 called a string. You must enclose the contents of the string inside
o ndloedn quotation marks so that the compiler knows you literally mean
. quotation marks. "Hello, World!". There is a reason for this requirement. Suppose you
need to print the word main. By enclosing it in quotation marks,
"main", the compiler knows you mean the sequence of charactersm a i n, not the
method named main. The rule is simply that you must enclose all text strings in quo-
tation marks, so that the compiler considers them plain text and does not try to
interpret them as program instructions.
You can also print numerical values. For example, the statement

System.out.printin(3 + 4);

displays the number 7.
The printin method prints a string or a number and then starts a new line. For
example, the sequence of statements

System.out.printin("Hello");
System.out.printin("World!");

prints two lines of text:
Hello
World!

There is a second method, called print, that you can use to print an item without
starting a new line. For example, the output of the two statements

System.out.print("00");
System.out.printin(3 + 4); 1

is the single line
007

SYNTAX 1.1 Method Call

object. methodName (parameters)

Example:

System.out.printin("Hello, Dave!")

Purpose:

To invoke a method on an object and supply any additional parameters

22

CHAPTER 1 = Introduction

SELF CHECK

B2

12. How would you modify the He1loPrinter program to print the words “Hello,
and “World!” on two lines?

13. Would the program continue to work if you omitted the line starting with //?
14. What does the following set of statements print?

System.out.print("My lucky number is");
System.out.printin(3 + 4 + 5);

CoMMON ERROR 1.1

Omitting Semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a com-
mon error. It confuses the compiler, because the compiler uses the semicolon to find where
one statement ends and the next one starts. The compiler does not use line breaks or closing
braces to recognize the end of statements. For example, the compiler considers

System.out.printin("Hello™)
System.out.printin("World!");

a single statement, as if you had written
System.out.printin("Hello") System.out.printin("World!");

Then it doesn’t understand that statement, because it does not expect the word System fol-
lowing the closing parenthesis after "He110". The remedy is simple. Scan every statement for
a terminating semicolon, just as you would check that every English sentence ends in a
period.

ADVANCED Toric 1.1

Alternative Comment Syntax

In Java there are two methods for writing comments. You already learned that the compiler
ignores anything that you type between // and the end of the current line. The compiler also
ignores any text between a /* and */.

/% A simple Java program */
The // comment s easier to type if the comment is only a single line long. If you have a com-
ment that is longer than a line, then the /* . . . */ comment is simpler:
This is a simple Java program that you can use to try out
your Compller and Vlrtual machlne
:’:/
It would be somewhat tedious to add the // at the beginning of each line and to move them
around whenever the text of the comment changes.

1.7 = Errors 23

In this book, we use // for comments that will never grow beyond a line, and /* . . . */
for longer comments. If you prefer, you can always use the // style. The readers of your code
will be grateful for any comments, no matter which style you use.

Ll

A syntax error is a
violation of the rules of
the programming
language. The compiler

Errors

Experiment a little with the HelloPrinter program. What happens if you make a
typing error such as

System.ouch.printin("Hello, World!™");

System.out.printin("Hello, World!);

System.out.printin("Hello, Word!");
In the first case, the compiler will complain. It will say that it has no
clue what you mean by ouch. The exact wording of the error message
is dependent on the compiler, but it might be something like “Unde-
fined symbol ouch”. This is a compile-time error or syntax error.

detects syntax errors. Something is wrong according to the language rules and the compiler

A logic error causes a
program to take an action
that the programmer did
not intend. You must test
your programs to find
logic errors.

finds it. When the compiler finds one or more errors, it refuses to
translate the program to Java virtual machine instructions, and as a consequence
you have no program that you can run. You must fix the error and compile again. In
fact, the compiler is quite picky, and it is common to go through several rounds of
fixing compile-time errors before compilation succeeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to
report as many errors as it can find, so you can fix them all at once. Sometimes,
however, one error throws it off track. This is likely to happen with the error in the
second line. Because the closing quotation mark is missing, the compiler will think
that the) ; characters are still part of the string. In such cases, it is common for the
compiler to emit bogus error reports for neighboring lines. You should fix only
those error messages that make sense to you and then recompile.

The error in the third line is of a different kind. The program will compile and
run, but its output will be wrong. It will print

Hello, Word!

This is a run-time error or logic error. The program is syntactically
correct and does something, but it doesn’t do what it is supposed to
do. The compiler cannot find the error. You, the programmer, must
flush out this type of error. Run the program, and carefully look at
its output.

During program development, errors are unavo1dable. Once a pro-
gram is longer than a few lines, it requires superhuman concentration
to enter it correctly without slipping up once. You will find yourself omitting semi-
colons or quotes more often than you would like, but the compiler will track down
these problems for you.

Logic errors are more troublesome. The compiler will not find them —in fact, the
compiler will cheerfully translate any program as long as its syntax is correct—but

24

cHAPTER T = Introduction

the resulting program will do something wrong. It is the responsibility of the pro-
gram author to test the program and find any logic errors. Testing programs is an
important topic that you will encounter many times in this book. Another impor-
tant aspect of good craftsmanship is defensive programming: structuring programs
and development processes in such a way that an error in one part of a program
does not trigger a disastrous response.

The error examples that you saw so far were not difficult to diagnose or fix, but
as you learn more sophisticated programming techniques, there will also be much
more room for error. It is an uncomfortable fact that locating all errors in a program
is very difficult. Even if you can observe that a program exhibits faulty behavior, it
may not at all be obvious what part of the program caused it and how you can fix it.
Special software tools (so-called debuggers) let you trace through a program to find
bugs—that is, logic errors. In Chapter 6 you will learn how to use a debugger
effectively.

Note that these errors are different from the types of errors that you are likely to
make in calculations. If you total up a column of numbers, you may miss a minus
sign or accidentally drop a carry, perhaps because you are bored or tired. Comput-
ers do not make these kinds of errors.

This book uses a three-part error management strategy. First, you will learn
about common errors and how to avoid them. Then you will learn defensive pro-
gramming strategies to minimize the likelihood and impact of errors. Finally, you
will learn debugging strategies to flush out those errors that remain.

SELF CHECK

15. Suppose you omit the // characters from the HelloPrinter.java program but
not the remainder of the comment. Will you get a compile-time error or a run-
time error?

16. How can you find logic errors in a program?

CoMMON ERROR 1.2

Misspelling Words

If you accidentally misspell a word, then strange things may happen, and it may not always
be completely obvious from the error messages what went wrong. Here is a good example of
how simple spelling errors can cause trouble:

public class HelloPrinter

{
public static void Main(String[] args)
{
System.out.printin("Hello, World!™);
}

1.8 = The Compilation Process 25

This class defines a method called Main. The compiler will not consider this to be the same as
the main method, because Main starts with an uppercase letter and the Java language is case
sensitive. Upper- and lowercase letters are considered to be completely different from each
other, and to the compiler Main is no better match for main than rain. The compiler will
cheerfully compile your Main method, but when the Java virtual machine reads the compiled
file, it will complain about the missing main method and refuse to run the program. Of
course, the message “missing main method” should give you a clue where to look for the
error.

If you get an error message that seems to indicate that the compiler is on the wrong track,
it is a good idea to check for spelling and capitalization. All Java keywords use only lower-
case letters. Names of classes usually start with an uppercase letter, names of methods and
variables with a lowercase letter. If you misspell the name of a symbol (for example, ouch
instead of out), the compiler will complain about an “undefined symbol”. That error mes-
sage 1s usually a good clue that you made a spelling error.

1.8 The Compilation Process

Some Java development environments are very convenient to use. Enter the code in
one window, click on a button to compile, and click on another button to execute
your program. Error messages show up in a second window, and the program runs
in a third window. With such an environment you are completely shielded from the
details of the compilation process. On other systems you must carry out every step
manually, by typing commands into a shell window.

No matter which compilation environment you use, you begin
your activity by typing in the program statements. The program that
you use for entering and modifying the program text is called an edi-
tor. Remember to save your work to disk frequently, because other-
wise the text editor stores the text only in the computer’s memory. If
something goes wrong with the computer and you need to restart it, the contents of
the primary memory (including your program text) are lost, but anything stored on
the hard disk is permanent even if you need to restart the computer.

When you compile your program, the compiler translates the Java
source code (that is, the statements that you wrote) into class files,
which consist of virtual machine instructions and other information
that is required for execution. The class files have the extension
.class. For example, the virtual machine instructions for the Hello-
Printer program are stored in a file Hel1oPrinter.class. As already
mentioned, the compiler produces a class file only after you have corrected all syn-
tax errors.

The class file contains the translation of only the instructions that you wrote.
That is not enough to actually run the program. To display a string in a window,
quite a bit of low-level activity is necessary. The authors of the System and Print-
Stream classes (which define the out object and the printin method) have imple-
mented all necessary actions and placed the required class files into a Library. A

An editor is a program for
entering and modifying
text, such as a Java
program.

The Java compiler
translates source code
into class files that contain
instructions for the Java
virtual machine.

26 cHAPTER 1 = Introduction

- ‘ ~
. , . Virtual
E _ .
ditor Compiler Machine Q
- 7 N
Running
Source File Program

Class files

Library files

Figure 13 From Source Code to Running Program

library is a collection of code that has been programmed and translated by someone
else, ready for you to use in your program.

The Java virtual machine loads the instructions for the program that you wrote,
starts your program, and loads the necessary library files as they are required.

The steps of compiling and running your program are outlined in Figure 13.

Begin

Edit
program

Compile
program

Compiler True

errors?

False
Test

program

Run-time True

errors?

False
Figure 14

The Edit-Compile-Test Loop End

Chapter Summary 27

The Java virtual machine

loads program

Programming activity centers around these steps. Start in the edi-
tor, writing the source file. Compile the program and look at the error

o odae messages. Go back to the editor and fix the syntax errors. When the
files and library files. compiler succeeds, run the program. If you find a run-time error, you

must look at the source code in the editor to try to determine the reason.

Once you find the cause of the error, fix it in the editor. Compile and run again to
see whether the error has gone away. If not, go back to the editor. This is called the
edit~compile~test loop (see Figure 14). You will spend a substantial amount of time
in this loop when working on programming assignments.

SELF CHECK

17

18.

What do you expect to see when you load a class file into your text editor?
Why can’t you test a program for run-time errors when it has compiler errors?

CHAPTER SUMMARY

1.

10.

1.

A computer must be programmed to perform tasks. Different tasks require
different programs.

- A computer program executes a sequence of very basic operations in rapid

succession.

- A computer program contains the instruction sequences for all tasks that it can

execute.
At the heart of the computer lies the central processing unit (CPU).

Data and programs are stored in primary storage (memory) and secondary stor-

age (such as a hard disk).

- The CPU reads machine instructions from memory. The instructions direct it

to communicate with memory, secondary storage, and peripheral devices.

. Generally, machine code depends on the CPU type. However, the instruction

set of the Java virtual machine (JVM) can be executed on many CPUs.

Because machine instructions are encoded as numbers, it is difficult to write
programs in machine code.

High-level languages allow you to describe tasks at a higher conceptual level
than machine code.

A compiler translates programs written in a high-level language into machine
code.

Java was originally designed for programming consumer devices, but it was first
successfully used to write Internet applets.

b5 s

28

CHAPTER 1 = [ntroduction

12

13.

14.

15.

16.

17.
18.
19.

20.

21.
22.

23.
24.

25.

26.
27.

28.

. Java was designed to be safe and portable, benefiting both Internet users and
students.

Java has a very large library. Focus on learning those parts of the library that
you need for your programming projects.

Set aside some time to become familiar with the computer system and the Java
compiler that you will use for your class work.

Develop a strategy for keeping backup copies of your work before disaster
strikes.

Java is case sensitive. You must be careful about distinguishing between upper-
and lowercase letters.

Lay out your programs so that they are easy to read.
Classes are the fundamental building blocks of Java programs.

Every Java application contains a class with a main method. When the applica-
tion starts, the instructions in the main method are executed.

Each class contains definitions of methods. Each method contains a sequence of
instructions.

Use comments to help human readers understand your program.

A method is called by specifying an object, the method name, and the method
parameters.

A string is a sequence of characters enclosed in quotation marks.

A syntax error is a violation of the rules of the programming language. The
compiler detects syntax errors.

A logic error causes a program to take an action that the programmer did not
intend. You must test your programs to find logic errors.

An editor is a program for entering and modifying text, such as a Java program.

The Java compiler translates source code into class files that contain instruc-
tions for the Java virtual machine.

The Java virtual machine loads program instructions from class files and library

files.

FURTHER READING

1.

http://jmol.sourceforge.net/applet/ The web site for the jmol applet for
visualizing molecules.

